Adaptive provisioning of differentiated services networks based on reinforcement learning

نویسندگان

  • Timothy Chee-Kin Hui
  • Chen-Khong Tham
چکیده

The issue of bandwidth provisioning for Per Hop Behavior (PHB) aggregates in Differentiated Services (DiffServ) networks has received a lot of attention from researchers. However, most proposed methods need to determine the amount of bandwidth to provision at the time of connection admission. This assumes that traffic in admitted flows always conforms to predefined specifications, which would need some form of traffic shaping or admission control before reaching the ingress of the domain. This paper proposes an adaptive provisioning mechanism based on reinforcement-learning principles, which determines at regular intervals the amount of bandwidth to provision to each PHB aggregate. The mechanism adjusts to maximize the amount of revenue earned from a usage-based pricing model. The novel use of a continuous-space, gradient-based learning algorithm, enables the mechanism to require neither accurate traffic specifications nor rigid admission control. Using ns-2 simulations, we demonstrate using Weighted Fair Queuing, how our mechanism can be implemented in a DiffServ network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning-based dynamic bandwidth provisioning for quality of service in differentiated services networks

The issue of bandwidth provisioning for Per Hop Behavior (PHB) aggregates in Differentiated Services (DiffServ) networks is imperative for differentiated QoS to be achieved. This paper proposes an adaptive provisioning mechanism that determines at regular intervals the amount of bandwidth to provision for each PHB aggregate, based on traffic conditions and feedback received about the extent to ...

متن کامل

Minimizing Transmission Costs through Adaptive Marking in Differentiated Services Networks

The issue of resource management in multi-domain Differentiated Services (DiffServ) networks has attracted a lot of attention from researchers who have proposed various provisioning, adaptive marking and admission control schemes. In this paper, we propose a Reinforcement Learning-based Adaptive Marking (RLAM) approach for providing end-to-end delay and throughput assurances, while minimizing p...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Reinforcement Learning in Neural Networks: A Survey

In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Systems, Man, and Cybernetics, Part C

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2003